44 Randomization and Derandomization

نویسندگان

  • Otfried Cheong
  • Ketan Mulmuley
  • Edgar Ramos
  • E. Ramos
چکیده

FRAMEWORK AND ANALYSIS Most randomized incremental algorithms in the literature follow the framework sketched here for the computation of the trapezoidal map: the structure to be computed is maintained while the objects defining it are inserted in random order. To insert a new object, one first has to find a “conflict” of that object (the location step), then local updates in the structure are sufficient to bring it up to date (the update step). The cost of the update is usually linear in the size of the change in the combinatorial structure being maintained, and can often be bounded using backwards analysis. The location step can be implemented using either a conflict graph or a history graph. In both cases, the analysis is the same (since the actual computations performed are also often identical). To avoid having to prove the same bounds repeatedly for different problems, researchers have defined an axiomatic framework that captures the combinatorial essence of most randomized incremental algorithms. This framework, which uses configuration spaces, provides ready-to-use bounds for the expected running time of most randomized incremental algorithms. See Section 44.5. POINT LOCATION THROUGH HISTORY GRAPH In our trapezoidal map example, the history graph may be used as a point location structure for the trapezoidal map: given a query point q, find the trapezoid containing q by following a path from the root to a leaf node of the history graph. At each step, we continue to the child node corresponding to the trapezoid containing q. The search time is clearly proportional to the length of the path. Backwards analysis shows that the expected length of this path is O(log n) for any fixed query Preliminary version (December 16, 2016). 1166 O. Cheong, K. Mulmuley, and E. Ramos point. Even stronger, one can show that the maximum length of any search path in the history graph is O(log n) with high probability. If point location is the goal, the history graph can be simplified: instead of storing trapezoids, the inner nodes of the graph can denote two different kinds of elementary tests (“Does a point lie to the left or right of another point?” and “Does a point lie above or below a line?”). The final result is then an efficient and practical planar point location structure [Sei91]. This observation can also lead to a somewhat different location step inside the randomized incremental algorithm. Instead of performing a graph search with the whole segment s, point location can be used to find the trapezoid containing one endpoint of s. From there, a traversal of the trapezoidal map allows locating all trapezoids intersected by s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomization, Derandomization and Antirandomization: Three Games

Spencer, J., Randomization, derandomization and antirandomization: three games. Theoretical Computer Science 131 (1994) 415-429. Three games are given between two players, Paul and Carole, with a common theme. In each round Paul does a split and Carole chooses. Random play by Carole allows a bound for the game value. Through derandomization this becomes a deterministic strategy for Carole minim...

متن کامل

Deterministic Algorithms for Submodular Maximization Problems

Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area most algorithms are randomized, and in almost all cases the approximation ratios obtained by current randomized algorithms are superior to the best results obtained by known deterministic algor...

متن کامل

Derandomization and Circuit Lower Bounds

1 Introduction Primality testing is the following problem: Given a number n in binary, decide whether n is prime. In 1977, Solovay and Strassen [SS77] proposed a new type of algorithm for testing whether a given number is a prime, the celebrated randomized Solovay-Strassen primality test. This test and similar ones proved to be very useful. This fact changed the common notion of " feasible comp...

متن کامل

Notes on Complexity Theory Last updated : November , 2011 Lecture 25

Randomization provides unconditional benefits in many settings; examples include cryptography (where random keys are used to provide protection against an adversary) and distributed computing (where randomness can be used as a means to break symmetry between parties). Randomness also appears to help in algorithm design. But is it possible that, from a complexity-theoretic perspective, randomnes...

متن کامل

Entropy, Randomization, Derandomization, and Discrepancy

The star discrepancy is a measure of how uniformly distributed a finite point set is in the d-dimensional unit cube. It is related to high-dimensional numerical integration of certain function classes as expressed by the Koksma-Hlawka inequality. A sharp version of this inequality states that the worst-case error of approximating the integral of functions from the unit ball of some Sobolev spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016